Piotr Sulewski https://orcid.org/0000-0002-0788-6567 , Jakub Bilski https://orcid.org/0009-0000-8339-4698

© Piotr Sulewski, Jakub Bilski. Artykuł udostępniony na licencji CC BY-SA 4.0

ARTYKUŁ

(Angielski) PDF

STRESZCZENIE

The main goal of this article is to present the unknown properties of the bimodal power Laplace (BPL) distribution such as: inflection points, Moors’ measure, pseudorandom number generator, entropy and Fisher information matrix. The secondary goals involve: a chronological overview of the large family of Laplace distributions, a brief review of the known properties of the analysed distribution and an estimation of the unknown parameters of the BPL distribution.
The BPL distribution has been defined by means of the standard Laplace distribution. The research has shown that the probability density function of the BPL distribution can also be obtained by applying the Fernández-Steel transformation to the Weibull distribution with a scale parameter equal to 1. Real data examples demonstrate that the BPL distribution is a flexible model that proves to be a valuable addition to the existing distributions for modelling bimodal data.

SŁOWA KLUCZOWE

Laplace distribution, double Weibull distribution, modelling bimodal data

JEL

C02, C10, C13, C15, C50

BIBLIOGRAFIA

Alavi, S. M. R. (2012). On a New Bimodal Normal Family. Journal of Statistical Research of Iran, 8(2), 163–176. https://doi.org/10.18869/acadpub.jsri.8.2.163.

Ali, M. M., Pal, M., & Woo, J. (2009). Skewed Reflected Distributions Generated by the Laplace Kernel. Austrian Journal of Statistics, 38(1), 45–58. https://doi.org/10.17713/ajs.v38i1.259.

Almetwally, E. M. (2022). The Odd Weibull inverse Topp-Leone distribution with Applications to COVID-19 Data. Annals of Data Science, 9(1), 121–140. https://doi.org/10.1007/s40745-021-00329-w.

Arowolo, O. T., Nurudeen, T. S., Akinyemi, J. A., Ogunsanya, A. S., & Ekum, M. I. (2019). Reduced Beta Skewed Laplace Distribution with Application to Failure-Time of Electrical Component Data. Annals of Statistical Theory and Applications, 1(1), 31–41.

Aryal, G., & Nadarajah, S. (2005). On the skew Laplace distribution. Journal of Information & Optimization Sciences, 26(1), 205–217. https://doi.org/10.1080/02522667.2005.10699644.

Bagchi, U., Hayya, J. C., & Ord, J. K. (1983). The Hermite distribution as a model of demand during lead time for slow-moving items. Decision Sciences, 14(4), 447–466. https://doi.org/10.1111/j.1540-5915.1983.tb00199.x.

Balakrishnan, N., & Kocherlakota, S. (1985). On the double Weibull distribution: order statistics and estimation. Sankhya: The Indian Journal of Statistics. Series B, 47(2), 161–178.

Beale, P. D. (1996). Statistical Mechanics (2nd edition). Butterworth-Heinemann.

Bolfarine, H., Martínez-Flórez, G., & Salinas, H. S. (2018). Bimodal symmetric-asymmetric power-normal families. Communications in Statistics – Theory and Methods, 47(2), 259–276. https://doi.org/10.1080/03610926.2013.765475.

Chen, C. (2002). Tests for the goodness-of-fit of the Laplace distribution. Communications in Statistics – Simulation and Computation, 31(1), 159–174. https://doi.org/10.1081/SAC-9687287.

Cordeiro, G. M., & Lemonte, A. J. (2011). The beta Laplace distribution. Statistics & Probability Letters, 81(8), 973–982. https://doi.org/10.1016/j.spl.2011.01.017.

Cruz-Medina, I. R. (2001). Almost nonparametric and nonparametric estimation in mixture models [doctoral dissertation, The Pennsylvania State University]. https://etda.libraries.psu.edu/files/final_submissions/2429.

Dadi, M. I., & Marks, R. J. (1987). Detector relative efficiencies in the presence of Laplace noise. IEEE Transactions on Aerospace and Electronic Systems, 23(4), 568–582. https://doi.org/10.1109/TAES.1987.310890.

Damsleth, E., & El-Shaarawi, A. H. (1989). ARMA Models with Double-exponentially Distributed Noise. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 51(1), 61–69. https://doi.org/10.1111/j.2517-6161.1989.tb01748.x.

Dierickx, D., Basu, B., Vleugels, J., & Van der Biest, O. (2000). Statistical extreme value modelling of particle size distributions: experimental grain size distribution type estimation and parameterization of sintered zirconia. Materials Characterization, 45(1), 61–70. https://doi.org/10.1016/S1044-5803(00)00049-8.

Du, Z. L. (2015). The bimodal structure of the solar cycle. The Astrophysical Journal, 804(1), 1–15. https://doi.org/10.1088/0004-637X/804/1/3.

Easterling, R. G. (1978). Exponential responses with double exponential measurement error – A model for steam generator inspection. In Proceedings of the DOE Statistical Symposium (pp. 90–110). US Department of Energy.

Ely, J. T. A., Fudenberg, H. H., Muirhead, R. J., LaMarche, M. G., Krone, C. A., Buscher, D., & Stern, E. A. (1999). Urine mercury in micromercurialism: bimodal distribution and diagnostic implications. Bulletin of Environmental Contamination and Toxicology, 63(5), 553–559. https://doi.org/10.1007/s001289901016.

Eugene, N., Lee, C., & Famoye, F. (2002). Beta-normal distribution and its applications. Communications in Statistics – Theory and Methods, 31(4), 497–512. https://doi.org/10.1081/STA-120003130.

Fernández, C., & Steel, M. F. J. (1998). On Bayesian modelling of fat tails and skewness. Journal of the American Statistical Association, 93(441), 359–371. https://doi.org/10.2307/2669632.

Fieller, N. J., Flenley, E. C., & Olbricht, W. (1992) Statistics of Particle Size Data. Journal of Applied Statistics, 41(1), 127–146. https://doi.org/10.2307/2347623.

George, D., & Rimsha, H. (2023). Kumaraswamy Esscher Transformed Laplace Distribution: Properties, Application and Extensions. Pakistan Journal of Statistics and Operation Research, 19(1), 51–62. https://doi.org/10.18187/pjsor.v19i1.3818.

Gómez-Déniz, E., Sarabia, J. M., & Calderín-Ojeda, E. (2021). Bimodal normal distribution: Extensions and applications. Journal of Computational and Applied Mathematics, 388, 1–12. https://doi.org/10.1016/j.cam.2020.113292.

Hady, D. H. A., & Shalaby, R. M. (2016). Transmuted Laplace Distribution: Properties and Applications. American Journal of Applied Mathematics and Statistics, 4(3), 94–98. https://pubs.sciepub.com/ajams/4/3/5.

Harandi, S. S., & Alamatsaz, M. H. (2013). Alpha-skew-Laplace distribution. Statistics & Probability Letters, 83(3), 774–782. https://doi.org/10.1016/j.spl.2012.11.024.

Hartley, M. J., & Revankar, N. S. (1974). On the estimation of the Pareto law from under-reported data. Journal of Econometrics, 2(4), 327–341. https://doi.org/10.1016/0304-4076(74)90018-9.

Hassan, M. Y., & El-Bassiouni, M. Y. (2016). Bimodal skew-symmetric normal distribution. Communications in Statistics – Theory and Methods, 45(5), 1527–1541. https://doi.org/10.1080 /03610926.2014.882950 .

Hassan, M. Y., & Hijazi, R. H. (2010). A bimodal exponential power distribution. Pakistan Journal of Statistics, 26(2), 379–396. https://pharmacy.aau.ac.ae/uploads/2018/12/201812051148392.pdf.

Hinkley, D. V., & Revankar, N. S. (1977). Estimation of the Pareto law from underreported data: A further analysis. Journal of Econometrics, 5(1), 1–11. https://doi.org/10.1016/0304-4076(77)90031-8.

Hirota, M., Holmgren, M., Van Nes, E. H., & Scheffer, M. (2011). Global resilience of tropical forest and savanna to critical transitions. Science, 334(6053), 232–235. https://doi.org/10.1126/science.1210657.

Hoaglin, D. C., Mosteller, F., & Tukey, J. W. (1983). Understanding Robust and Exploratory Data Analysis. Wiley.

Hsu, D. A. (1979). Long-tailed Distributions for Position Errors in Navigation. Journal of Applied Statistics, 28(1), 62–72. https://doi.org/10.2307/2346812.

Inoue, T. (1979). On income distribution: The welfare implications of the general equilibrium model, and the stochastic processes of income distribution formation [doctoral dissertation, University of Minnesota].

Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous Univariate Distributions (vol. 2, 2nd edition) John Wiley.

Jurić, V. (2019). Asymmetric double Weibull distribution and its applications [doctoral dissertation, University of Ljubljana, School of Economics and Business]. http://www.cek.ef.uni-lj.si/doktor/Visnja_Juric.pdf.

Jurić, V., & Kozubowski, T. J. (2004). Skew Weibull distributions on the real line I: Basic properties. Journal of Probability and Statistical Science, 2(2), 187–198.

Jurić, V., & Kozubowski, T. J. (2005). Skew Weibull distributions on the real line: Estimation and Applications. Journal of Probability and Statistical Science, 3(1), 43–58.

Khandeparkar, P. P., & Dixit, V. U. (2021). Generalized Skew Log Laplace Distribution. Journal of the Indian Society for Probability and Statistics, 22, 303–318. https://doi.org/10.1007/s41096-021-00105-2.

Kiprotich, G. (2018). Laplace Distribution and Its Generalizations [master dissertation, University of Nairobi].

Koenker, R., & Machado, J. A. F. (1999). Goodness of Fit and Related Inference Processes for Quantile Regression. Journal of the American Statistical Association, 94(448), 1296–1310. https://doi.org/10.1080/01621459.1999.10473882.

Kotz, S., Kozubowski, T. J., & Podgórski, K. (2001). The Laplace Distribution and Generalizations. A Revisit with Applications to Communications, Economics, Engineering, and Finance. Birkhäuser. https://doi.org/10.1007/978-1-4612-0173-1.

Kotz, S., Kozubowski, T. J., & Podgórski, K. (2002). Maximum likelihood estimation of asymmetric Laplace parameters. Annals of the Institute of Statistical Mathematics, 54(4), 816–826. https://doi.org/10.1023/A:1022467519537.

Laplace, P. S. (1986). Memoir on the Probability of the Causes of Events (S. M. Stigler, Trans.). Statistical Science, 1(3), 364–378. https://doi.org/10.1214/ss/1177013621.

Ly, A., Marsman, M., Verhagen, J., Grasman, R. P. P. P., & Wagenmakers, E. J. (2017). A tutorial on Fisher information. Journal of Mathematical Psychology, 80, 40–55. https://doi.org/10.1016/j.jmp.2017.05.006.

Manly, B. F. J. (1976). Some examples of double exponential fitness functions. Heredity, 36(2), 229–234. https://doi.org/10.1038/hdy.1976.27.

Moors, J. J. A. (1988). A quantile alternative for kurtosis. Journal of the Royal Statistical Society: Series D (The Statistician), 37(1), 25–32. https://doi.org/10.2307/2348376.

Nassar, M. M. (2016). The Kumaraswamy-Laplace Distribution. Pakistan Journal of Statistics and Operation Research, 12(4), 609–624. https://doi.org/10.18187/pjsor.v12i4.1485.

Nekoukhou, V., & Alamatsaz, M. H. (2012). A family of skew-symmetric-Laplace distributions. Statistical Papers, 53(3), 685–696. https://doi.org/10.1007/s00362-011-0372-7.

Perveen, Z., Munir, M., & Ahmad, M. (2017). Double Weibull distribution: properties and its application. Pakistan Journal of Science, 69(1), 95–100. https://doi.org/10.57041/vol69iss1pp%25p.

Puig, P., & Stephens, M. A. (2000). Tests of fit for the Laplace distribution, with applications. Technometrics, 42(4), 417–424. https://doi.org/10.1080/00401706.2000.10485715.

Radwan, S. S. (2020). The Generalization of Transmuted Laplace Distribution. Journal of Statistics Applications & Probability, 9(2), 299–308. https://doi.org/10.18576/jsap/090210.

Rao, A. V. D., & Narasimham, V. L. (1989). Linear estimation in double Weibull distribution. Sankhya: The Indian Journal of Statistics, Series B, 51(1), 24–64.

Reed, W. J., & Jorgensen, M. (2004). The double Pareto-lognormal distribution: A new parametric model for size distributions. Communications in Statistics – Theory and Methods, 33(8), 1733–1753. https://doi.org/10.1081/STA-120037438.

Sebastian, G., & Dais, G. (2012). Esscher transformed Laplace distributions and its applications. Journal of Probability and Statistical Sciences, 10(2), 135–152.

Shah, S., & Hazarika, P. J. (2020). The Alpha Beta Skew Laplace Distribution and Its Applications. In P. Hazarika & L. Handique (Eds.), Mathstatika (vol. 1, pp. 153–170). Madhabdev University.

Shah, S., Hazarika, P. J., & Chakraborty, S. (2019). The Balakrishnan Alpha Skew Laplace Distribution: Properties and Its Applications. https://doi.org/10.48550/arXiv.1910.01084.

Shah, S., Hazarika, P. J., Chakraborty, S., & Alizadeh, M. (2023). The Balakrishnan-Alpha-Beta-Skew-Laplace Distribution: Properties and Applications. Statistics, Optimization & Information Computing, 11(3), 755–772. https://doi.org/10.19139/soic-2310-5070-1247.

Shama, M. S., Alharthi, A. S., Almulhim, F. A., Gemeay, A. M., Meraou, M. A., Mustafa, M. S., Hussam, E., & Aljohani, H. M. (2023). Modified generalized Weibull distribution: theory and applications. Scientific Reports, 13(1), 1–16. https://doi.org/10.1038/s41598-023-38942-9.

Shannon, C. E. (1948). A Mathematical Theory of Communication. Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.

Shaw, W. T., & Buckley, I. R. C. (2009). The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew kurtotic-normal distribution from a rank transmutation map. https://doi.org/10.48550/arXiv.0901.0434.

Sulewski, P., Alizadeh, M., Das, J., Hamedani, G. G., Hazarika, P. J., Contreras-Reyes, J. E., & Yousof, H. M. (2025). A New Logistic Distribution and Its Properties, Applications and PORT-VaR Analysis for Extreme Financial Claims. Mathematical and Computational Applications, 30(3), 1–30. https://doi.org/10.3390/mca30030062.

Tabass, M. S., Borzadaran, G. R. M., & Amini, M. (2016). Renyi entropy in continuous case is not the limit of discrete case. Mathematical Sciences and Applications e-Notes, 4(1), 113–117. https://doi.org/10.36753/mathenot.421418.

Tovar-Falón, R., & Martínez-Flórez, G. (2022). A New Class of Exponentiated Beta-Skew-Laplace Distribution. Anais da Academia Brasileira de Ciencias, 94(4), 1–17. https://doi.org/10.1590/0001-3765202220191597.

Tsallis, C. (1988). Possible generalizations of Boltzmann-Gibbs statistics. Journal of Statistical Physics, 52(1–2), 479–487. https://doi.org/10.1007/BF01016429.

Vila, R., Saulo, H., & Roldan, J. (2021). On some properties of the bimodal normal distribution and its bivariate version. https://doi.org/10.48550/arXiv.2106.00097.

Yilmaz, A. (2016). The flexible skew Laplace distribution. Communications in Statistics – Theory and Methods, 45(23), 7053–7059. https://doi.org/10.1080/03610926.2014.974821.

Yu, K., & Zhang, J. (2005). A Three-Parameter Asymmetric Laplace Distribution and Its Extension. Communications in Statistics – Theory and Methods, 34(9–10), 1867–1879. https://doi.org/10.1080/03610920500199018.

Zabolotnii, S. V., Kucheruk, V. Y., Warsza, Z. L., & Khassenov, ?. K. (2018). Polynomial estimates of measurand parameters for data bimodal mixtures of exponential distributions. Bulletin of the Karaganda University, (2), 71–80. https://phs.buketov.edu.kz/index.php/physics-vestnik/article/view/236.

Zhang, C., Mapes, B. E., & Soden, B. J. (2003). Bimodality in tropical water vapor. Quarterly Journal of the Royal Meteorological Society, 129(594), 2847–2866. https://doi.org/10.1256/qj.02.166.

Do góry
© 2019-2022 Copyright by Główny Urząd Statystyczny, pewne prawa zastrzeżone. Licencja Creative Commons Uznanie autorstwa - Na tych samych warunkach 4.0 (CC BY-SA 4.0) Creative Commons — Attribution-ShareAlike 4.0 International — CC BY-SA 4.0